DISSOLUTION OF A HOT BODY IN CONTACT WITH A FREE LIQUID SURFACE
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The effect of capillary forces on the dissolution of a hot body in con-
tact with a free liquid surface is examined.

The surface tension o depends on the temperature
T and concentration ¢ of the solution [1], so that for
small temperature intervals AT and low concentra-
tions we can write approximately

e=0,+6AT +asc (1)

The constant coefficient ¢; = da/dT < 0 for all
liquids. As for the coefficient oy, it may be either
negative or positive. We consider the case «; > 0.
The dependence of surface tension on temperature
and concentration gives the result that the hot and
saturated layers of solution directly adjacent to the
dissolving body spread over the surface of the liquid
under the action of surface tensionforces. This motion
is called capillary convection [2].

Capillary convection leads to intense dissolution
not only in thin layers of liquid but also in volumes
whose - dimensions are of the same order in all direc-
tions [3].

Below it is shown how surface tension affects the
steady dissolution of hot bodies at the surface of a
liguid. An exact solution of the problem is found in
the absence of a gravitational field. Graphs of the
lines of equal concentration and streamlines are
presented.

We note that in the more general formulation, with
allowance for gravitational convection, the problem
does not have an exact solution. On the other hand, it
is clear that under certain conditions (light layers at
the top) gravitational convection will play no part. This
occurs, for example, when the density of the hot body
is low in comparison with the liguid.

Consider a liquid occupying the half-space z > 0.
The free surface of the liquid is at z = 0. At the origin
of the spherical coordinate system a heated rod is
advanced into the liquid at a constant rate vy, such
that the end of the rod is able to dissolve without pene-
trating into the interior of the liquid. If we denote the
cross section of the rod by Sy and its density by oy,
in unit time I = vyoSy units of mass are dissolved.
The cross section of the rod is assumed to be small
and is not taken into account in the problem. The rod
supplies Q units of heat to the liquid each second.

In the absence of a gravitational field, the Navier-
Stokes equations for steady free convection, heat con-
duction, and diffusion and the continuity equation have
the form

WMV=-—%VP+VW%

vyT = v T,
vve =D V2c,
div v = 0. 2)

From the symmetry of the problem, it follows that

U= g—z:p =0. (3)

Moreover, from the symmetry conditions on the z-
axis (4 = 0) we can write

dv
, 0T _9p % _ .,
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At the liquid surface ($ = 7/2) there is no normal
velocity component and no heat or diffusion fluxes
across the surface:

vy = o = 2 g, (5)

Furthermore, at the liquid surface the tangential com-
ponent of the viscous stress tensor must be balanced
by the tangential stress due to the variation of o (see
(1)) along the surface [2,3]:

L 6o, OT ac
1 T

= Oy —
r 0% ar or

(8)

At infinity, all the functions must approach zero. And,
finally, the following integral conditions of constancy
of the mass and heat flows through a hemisphere of
any radius with center at the coordinate origin must
be satisfied:
a/2 .
2mp S (cv,—D aa_”r-) Psinddd =1,

/2

2npc, 5 (Tv,—x g—Z—‘) rsinddd = Q. (7)
0

We emphasize that the quantity I is arbitrary; i.e.,
there are no limitations on the actual rate of solution.
System (2) admits the separation of variables:
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Fig. 1. f(A) as a function of A.

This form of the functions automatically satisfies the
condition of subsidence at infinity.

Substituting functions (8) into (2) and carrying out
the necessary operations (see [3]), using (3), (4), and
(5), we obtain

dinw B — — (sin90,)
de = sin @

C. C.
e3=(1+A)*’;fip, 8s= (14 A)° Zﬁs—,

O, = —2

9)

i e=VIT4A P=—; S=-.
% D
The constants A, C;, and C, are found from condi-
tions (6) and (7). In the notation

w = 1, (1 4+ cos By — ny (14 cos§)%;
1+¢

Q o U Ug
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these equations take the form
A=C; +Cy
f (14 P*03) 0;dt = R, (11)

0

1
\ (1+5%02) 0,df = R,..
0

System (11) gives A, Cy, and C, as functions of the
four parameters Ry, Re, P, and S and is too com-
plicated for a review of the results, in the general

case. Below we consider the special case P = S = 1,

. Then A, C,, and C, are found from the equations

A=C,+C,
R . R
G=t@ T TF@ (12)

FA) =1+ 4) {f%—%j Gif}.
(4] 0

The first integral in f(A) is evaluated exactly (it de-
termines the diffusion heat and mass transfer):
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Fig. 2. Equal-concentration lines: a) Rp = 0, Ry =9; b) 41 and
9; ¢) 0 and 160; d) 277 and 160,

L

Fig. 3. Streamlines (A = 24).
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The second integral in f(A) determines the convective
transfer. At large R and R, this integral is much
larger than the first. The function f(A) from (12) is
represented in Fig. 1.

The results of the calculations are reproduced in
Figs. 2 and 3. Figure 2 shows the lines of equal con-
centration (the isotherms look exactly the same). Curve
a corresponds to an isothermal liquid and small mass
fluxes. The form of the isoline, which closely re-
sembles a semicircle, indicates the predominance of
the diffusion mass transfer mechanism. Curve b is
the same line of equal concentration at relatively low
heat fluxes. The sharp compression of the isolines
points to developed thermocapillary convection, which
entrains the dense layers of solution and carries them
along the surface of the liquid. The curve ¢ represents
the line of equal concentration in the isothermal liquid
at large mass fluxes. Curve d represents the same
isoline at large R.

The streamlines are shown in Fig. 3. The direction
of motion is indicated by the arrows.

In Fig. 2 (curves b, c,d) and Fig. 3, the capillary
convection mechanism is plainly visible. The capillary
forces, directed toward the cold layers and low con-
centrations, stretch the isolines along the surface,
while the liquid flowing along the z-axis from the in-
terior pinches the isolines at the center.

It is not difficult to extend these results to the dis-
solving of a cold body in a hot liquid, to the case of
negative sorption, etc.

It is interesting to note that when P = 8 the terms
R and R¢ enter into the equations in exactly the same
way, so that when R = —Rg (cold rod), capillary
copn—ection does not occur,

NOTATION

a is the surface tension; z is the polar axis; v,
Sy, and py are the veloecity, cross section, and density
of the rod; Iis the mass flux; Q is the heat flux;
v({vy,vs, v¢) is the velocity of the liquid; p is the pres-
sure; T is the temperature; c is the concentration;

p is the density; y is the thermal diffusivity; D is the
diffusion coefficient; n is the dynamic viscosity; v is
the kinematic viscosity; r, 4, and ¢ are spherical
coordinates; P is the Prandtl number; Sisthe Schmidt
number (diffusion Prandtl number); R¢ is the dimen-
sionless mass flux; Ry is the dimensionless heat flux.
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